Yixuan Sun

31 Wadsworth Court – Lafayette, IN, 47905 ☐ 765-409-0454 • ☑ yixuan-sun@purdue.edu ③ iamyixuan.github.io • ☐ iamyixuan • in YixuanSun ☑ yixuan_sun23

Scientific Machine Learning, Graph Neural Networks, Operator Learning.

Education

Purdue University

West Lafayette, IN 2018 - 2022

Doctor of Philosophy

School of Mechanical Engineering

Purdue University West Lafayette, IN

Master of Science

2016 - 2018

School of Mechanical Engineering

Thesis: Deep Neural Network Regression and Sobol Sensitivity Analysis for Daily Solar Energy Prediction Given Weather Data

Shandong University Jinan, China

Bachelor of Science 2012 - 2016

Energy and Power Engineering & Financial Mathematics

Working Experiences

Argonne National Laboratory

Lemont, IL

Postdoctoral Appointee

Oct 2022 - current

- Developing safety-constrained reinforcement learning approaches for complex system control.
- Investigating surrogate neural networks' abilities to match the adjoints of physical forward solvers for ocean and climate models.
- O Contributing to DeepHyper with physics-informed neural network benchmark and development.

Argonne National Laboratory

Lemont, IL

Givens Associate (Remote)

May - July 2021

Traffic Incident Detection: data-centric weak supervision approach

- Developed data-centric supervised learning pipeline for incident detection on traffic networks with quantified uncertainty.
- Performed efficient neural network training on Argonne's JLSE GPU cluster and hyper-parameter tuning with DeepHyper.

Argonne National Laboratory

Lemont, IL

Givens Associate (Remote)

May - August 2020

Traffic Incident Detection: Detecting traffic incidents with time-series analysis and deep learning.

- O Built a pipeline for processing raw traffic data and matching incidents.
- Implemented matrix profile, dynamic graph diffusion convolutional recurrent neural network (DCRNN), and other elementary anomaly detection methods to detect incidents.

Pacific Northwest National Laboratory

Richland, WA

Machine Learning Engineering Intern

May - August 2018

Generation Dispatch Prediction: Predicting generation dispatch for multi-area under contingencies.

- Investigated the sufficiency of local features for generation dispatch prediction in power grids.
- Developed an accurate random forest-based regression model and conducted feature importance and sensitivity analyses.

Hyundai Card *Graduate Student Intern*

Seoul, South Korea

Dec 2017 - Jan 2018

Conducted experiments of deploying the Daemo crowdsourcing platform for Hyundai Card.

Projects

Emulating a Target Trial: Deep Learning-based Prognosis in Healthcare

- Modeled the dependency between treatment policies, patient characteristics, and treatment results.
- Quantified the adequate time interval of measurement for effective prediction.
- Established LSTM recurrent neural networks and Gaussian process-based logistic regression models to infer patients' survival.

Convolutional Neural Networks-based Distracted Drivers Detection

- Adopted convolutional neural networks to classify driving behaviors in the given images, where Mask-RCNN was used as a part of feature engineering.
- Visualized network's attention on images via the global average pooling in ResNet, generating Class Activation Maps. Demonstrated the localization ability of global average pooling given image-level labels.
- O Gaussian process-based logistic regression models to infer patients' survival.

Permeability Regression of Porous Media

- Proposed a novel descriptor connectedness for permeability prediction with a polynomial regression model.
- Investigated the connection between the Minkowski Functionals and connectedness.

Publications

- Chakraborty, S., **Sun**, **Y.**, Lin, G., & Qiao, L. (2022). Vapor–liquid equilibrium estimation of n-alkane/nitrogen mixtures using neural networks. *Journal of Computational and Applied Mathematics*, 114059.
- **Sun**, **Y.**, Mitra, S., Deva, A., Garcia, E., & Lin, G. (2022). Artificial intelligence inferred microstructural properties from voltage-capacity curves. *Scientific reports*.
- Han, G., **Sun**, **Y.**, Feng, Y., Lin, G., & Lu, N. (2021). Machine learning regression guided thermoelectric materials discovery–a review. *ES Materials & Manufacturing*, 14, 20–35.
- **Sun**, **Y.**, Mallick, T., Balaprakash, P., & Macfarlane, J. (2021). A data-centric weak supervised learning for highway traffic incident detection. *arXiv preprint arXiv*:2112.09792.
- **Sun**, **Y.**, Hanhan, I., Sangid, M. D., & Lin, G. (2020). Predicting mechanical properties from microstructure images in fiber-reinforced polymers using convolutional neural networks. *arXiv* preprint *arXiv*:2010.03675.
- Yang, J., Li, Q., & **Sun**, **Y.** (2020). A wavelet-cnn-lstm model for tailings pond risk prediction. *arXiv preprint arXiv*:2010.00518.
- Yang, J., Sun, Y., Li, Q., & Sun, Y. (2020). Effective risk prediction of tailings ponds using machine learning. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), 234–238.
- Huang, Y., Xu, Q., Hu, C., **Sun**, Y., & Lin, G. (2019). Probabilistic state estimation approach for ac/mtdc distribution system using deep belief network with non-gaussian uncertainties. *IEEE Sensors Journal*, 19(20), 9422–9430.
- Keller, N., Vacca, A., **Sun**, **Y.**, Zhou, Y., & Lin, G. (2019). Classification of machine functions: A case study. *the 16th Scandinavian International Conference on Fluid Power*.

- **Sun**, **Y.**, Lin, G., Han, Q., Vian, C., & Yang, D. (2019). Exploratory data analysis for achieving optimal environmental and operational parameter settings for making quality crossmember castings. *Die Casting Congress Exposition* 1.
- Yang, J., Wang, W., Lin, G., Li, Q., **Sun**, Y., & Sun, Y. (2019). Infrared thermal imaging-based crack detection using deep learning. *IEEE Access*, *7*, 182060–182077.
- **Sun**, **Y.** (2018). *Deep neural network regression and sobol sensitivity analysis for daily solar energy prediction given weather data* (Doctoral dissertation). Purdue University.
- **Sun**, **Y.**, Fan, X., Huang, Q., Li, X., Huang, R., Yin, T., & Lin, G. (2018). Local feature sufficiency exploration for predicting security-constrained generation dispatch in multi-area power systems. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 1283–1289.

Skills

Programming Languages: Python, R, C++, Matlab, SAS

Libraries: PyTorch, JAX, PyG, TensorFlow, Keras, Scikit-Learn, Numpy, Pandas, Jupyter, OpenCV, PIL, CUDA

Presentations

MCS seminar, Argonne National Laboratory

Lemont, IL

Seminar Talk

2022

DeepGraphONet: A Deep Graph Operator Network for Learning the Dynamics of Networked Systems.

The "Celebrating Discovery Park District" Event

West Lafayette, IN

Poster presentation

2022

DeepGraphONet: A Deep Graph Operator Network for Learning the Dynamics of Networked Systems.

Teaching

Teaching Assistant

West Lafayette, IN

Intermediate Heat Transfer

Spring 2019

- Held office hours to answer students' questions.
- Graded and desgined homework problems/exams.

Teaching Assistant

West Lafayette, IN

Fluid Mechanics

Fall 2018

- Held office hours to answer students' questions.
- Graded homework problems and laboratory reports.
- Guided students through laboratory sessions.

Services

Reviewer

- Accident Analysis & Prevention.
- o The Transportation Research Board (TRB) 102nd Annual Meeting.

Volunteer West Lafayette, IN 2016-2017

Helped local high schools, shelters, and government organize, distribute, and manage event items.

Languages

English: Proficient. **Mandarin**: Native.

References

Guang Lin: guanglin@purdue.edu